
Voice Separation - A Local Optimisation Approach

Voice Separation — A Local Optimisation Approach
Jürgen Kilian

Department of Computer Science
Darmstadt University of Technology

Wilhelminenstr. 7
64283 Darmstadt, Germany

+49 6151 166184

kilian@salieri.org

Holger H. Hoos �
Department of Computer Science

University of British Columbia
2366 Main Mall

Vancouver, BC, V6T 1Z4, Canada
+1 604 822 1964

hoos@cs.ubc.ca

ABSTRACT
Voice separation, along with tempo detection and quantisation, is one
of the basic problems of computer-based transcription of music. An
adequate separation of notes into different voices is crucial for ob-
taining readable and usable scores from performances of polyphonic
music recorded on keyboard (or other polyphonic) instruments; for
improving quantisation results within a transcription system; and in
the context of music retrieval systems that primarily support mono-
phonic queries. In this paper we propose a new voice separation
algorithm based on a stochastic local search method. Different from
many previous approaches, our algorithm allows chords in the in-
dividual voices; its behaviour is controlled by a small number of
intuitive and musically motivated parameters; and it is fast enough
to allow interactive optimisation of the result by adjusting the pa-
rameters in real-time. We demonstrate that compared to existing
approaches, our new algorithm generates better solutions for a num-
ber of typical voice separation problems. We also show how by
changing its parameters it is possible to create score output suitable
for different needs, � � � � , piano-style � � � orchestral scores.

1. INTRODUCTION
For the transcription of low-level musical data into score notation,
three major tasks need to be performed: tempo-detection, quantisa-
tion, and, in the case of non-monophonic input, a separation of the
notes into different voices which can possibly contain chords. Voice
separation is also essential for any MIR system based on monophonic
techniques (see, � � � � , [5]). Finally, voice separation is of interest in
the contexts of musical analysis and music cognition [2, 9].

In this work, our focus is on the creation of voice separations for var-
ious needs, particularly as arising in score generation and notation
tasks as well as in the context of music information retrieval. Hence,
our goal is not to find ‘the correct’ voice separation, which could
hardly be defined without making restrictive assumptions about mu-
sical style, and would be difficult to capture accurately even in the
presence of such assumptions. Rather, we pursue the more pragmatic
goal of creating an adequate algorithm that is capable of finding a
range of voice separations that can be seen as reasonable solutions
in the context of different types of score notation (� � � � , only mono-
phonic voices, only one voice including chords, multiple voices and
chords; see Figure 1). The underlying idea is to allow a user by
controlling a small number of intuitive parameters of the algorithm
in real-time to interactively find a voice separation for a given piece
that suits her specific but not necessarily explicitly known needs,
and requires only minimal manual modifications in order to obtain a
satisfying result.

� ��� 	
�� �� � � � � ����� � ��� � ����� � � � � ��� � ��
 �� !
 ��� " � � �$# % � � � % � &
�$� � ��	 � � � �('�� �) � � 	 � � *+
 �-, � % � �
 �
 . * &-/-� � � � � ��� � � � 	 � � 0�1 &
2 3 4 5 6 ��� � ��	 � � � � & 7�� � �8� � * 0

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page.

%9
2002 IRCAM - Centre Pompidou

Our approach splits a complete piece into small slices of overlapping
notes. These slices are processed iteratively, assigning each note of
a slice to a voice. During this process, chords can be created by as-
signing multiple notes from a slice to the same voice. A randomised
local search algorithm is used for finding assignments that minimise
a parametric cost function which is used to assess the quality of
partial voice separations. This cost function includes components
that reflect the relationship between the notes within a slice (possible
chord groupings) as well as between a slice and the partial voice
assignment of previously processed slices (voice leading).

The task of assigning the notes of a slice to a number of existing
voices becomes challenging if the number of notes differs from the
number of voices available at that point. If there are more notes
within the slice than voices, chords have to be introduced in one or
more voices, or new voices need to be created. Our approach works
with a maximum number of voices that can either be specified by
the user or derived from the maximum number of notes overlapping
at any point in time. (It may be noted that we preprocess the input
data prior to performing voice separation in order to deal with certain
types of inaccuracies and noise; this will be described in more detail
in Section 5.2.) However, voices are only used when required and –
depending on the parameter setting for the cost function – the result
of the voice separation process will not always utilise the maximum
number of voices.

An empirical evaluation of our algorithm shows that by using differ-
ent (user accessible) settings for the parameters of the cost functions,
a range of reasonable voice separations can be obtained for a given
input. In many cases that are known to be problematic for other
voice separation methods, such as static split-point separation or the
approach described by Temperley [9], our algorithm achieves good
results. In other cases, including randomly generated music, pieces
with a high degree of pitch overlaps between voices, or pieces with-
out any voice structure, our method encounters similar problems as
other approaches.

The remainder of this paper is structured as follows. In the next
section, we briefly describe previous work on voice separation and
known algorithmic approaches. We then introduce some formal
concepts that are required for a precise description of the voice sep-
aration problem addressed in this work and our algorithmic solution
to this problem. The basic voice separation algorithm is presented in
Section 4, and Section 5 describes important aspects of our current
implementation. Finally, we present and discuss a range of sample
results obtained from our new voice separation algorithm. We end
with some conclusions and directions for future work.

2. EXISTING APPROACHES
Various approaches for finding good voice separations of a given
input piece have been proposed in the literature and/or are used in
practice. Most commercial sequencer software products implement
the extremely simple split point separation technique, while more
complex approaches appear to be only implemented in academic
systems, such as Temperley and Sleator’s Melisma Music Analyzer
[10].

Voice Separation - A Local Optimisation Approach

� � � � % �
��� � � � �
	 ���� ��� � � � ��� � ��� � � � � � ����� ��� � � � ����� � � ����� � �� � � � �� ��� � ��� � !�� ��� ��"#"�� � � � � � ��� �$��%� � ��� �'& ��� � "�(
)*%+� ��� � ��, � � & � � (�& %-� �.�/, � � & � �.��� � ��& ��� � "�0

� �

� �
��� � � � �
1 �32-� � & �
� � ��� � � � � � �'� � �4�
��� � � �5� � 6� ����� � & � ���%-��� � ���7�8 � "� �� � ����� � � ��� ����� � � & �� ��")�%.��� � �� � �
��� �$� ����� � � & ��0

9 �� � ��:�� � � ��9 � ��� � � � � � �
One of the simplest methods for voice separation is to split the range
of all possible pitches into a number of disjoint intervals and to assign
notes to voices depending on which pitch range they fall into. For
two voices, this is achieved by fixing one pitch as a split point and
by assigning all notes with equal or higher pitch to the first voice,
while all notes with a lower pitch are assigned to the second voice.
In general, for separating a piece into ; voices, ;+<�= split points are
used to define the ; respective pitch ranges.

This approach is easy to implement and is used in most commercial
sequencer software packages; however, it works correctly only for
pieces in there are no overlaps in the ranges of different voices and
will produce errors if this condition is not satisfied (see Figure 2a).

>��� �/?-� � � "@A����� � � & ��� �
Because composers/arrangers are typically using voice-leading rules
when composing or arranging musical pieces, it is possible to use
the same rules for the inverse task of separating notes into separate
voices. Studies of human perception of music show that if melodies
are following such rules they are easier the perceive by human lis-
teners [2]. Examples of voice leading rules include the following:

(1) prefer small intervals between succeeding notes

(2) keep range of a voice small

(3) use a small number of voices

(4) avoid crossings of voices

Because there are many such rules, including ‘weak’ rules which
depend on the musical context, this approach will lead to many errors
in pieces with more than two voices or with a changing number of
voices. An implementation which mostly uses the ‘nearest path
rule’ (1) is described by Cambouropoulos [1]. The nearest path
rule implementation in FERMATA [6] showed that the results are
mostly correct if the input data can be cleanly separated into a fixed
number of continuous voices throughout the piece. If, however, the
number of active voices changes or the ranges of two voices show
major overlaps, this approach often produces erroneous separation.
Improved performance can be achieved by segmenting the given
piece into fragments during each of which the number of active voices
remains constant, but unfortunately, finding such segmentations can
be difficult.

As the number of rules increases, finding optimal voice separations
with respect to a given rule system becomes a non-trivial task. Tem-
perley and Sleator solved this problem by using a dynamic program-
ming approach [9, 10]. Their Melisma Music Analyzer includes a
contrapuntal analysis module which is based on a preference rule
system. Different from our approach presented here, their focus is
more on a correct analysis than on creating reasonable and flexible
score-notation. One major difference to our approach is the fact that
their system does not detect chords.

3. PRELIMINARIES
For the purposes of this work, we assume that the piece of music
for which voice separation is to be performed is given in the form
of a list of notes sorted by the time positions of their respective
onset times. The B th note in this list is represented by a feature
vector CED�FHG I D J K D J L D � , where I D , K D , and L D denote the onset time,
duration, and pitch of CED . We also use M N � � O G CED � , P Q R S O T M N*G CED � ,
and U T O V W G CED � to refer to I D , K D , and L D for a given note CED . Likewise,
we associate two integer values X D and Y D with each note CED to
represent the voice and chord CED is currently associated with; we
also refer to these values as � M T V � G CED � and V W M R P�G CED � , respectively.
Furthermore, we define M Z � � O G CED � F$I D�[�K D , which effectively
indicates the endpoint of note B .
Next, we define some relations between notes that are needed in the
following:

CED�\C�]_^ `aM N � � O G CED � \3M N � � O G C�] �
CED F�C�]_^ `aM N � � O G CED � F
M N � � O G C�] �

Furthermore, the function M � � R b S U�G CED J C�] � indicates whether notesCED and C�] overlap in time: M � � R b S U�G CED J C�] � is true if and only
if CED.\$C�] and M Z!� � O G CED ��c M N � � O G C�] � or if CED c C�] andM Z � � O G C�] ��c M N � � O G CED � .
Using these definitions, the input of our algorithm can be formally
written as deFfG C�g J h h h J CEi � such that j B�k'l = J h h h J m�<
= n4^CED�\4CED o�g , T � � � , as a list of notes sorted in ascending order of their
respective onset times.

In the output of our voice separation algorithm, we allow two or
more notes with the same onset time only to be assigned to the same
chord if they form a chord:

CED�FC�]_p � M T V � G CED �+qF � M T V � G C�] � rV W M R P�G CED � F V W M R P�G C�] �

For quantised input data, we restrict chords to consist only of notes
with equal onset times. In the case of unquantised input data, onset
times may be imprecise and hence we have to allow combining over-
lapping notes with different onset times into the same chord. In our
implementation, we recognise and eliminate small overlaps and other
inaccuracies during a preprocessing phase; this will be explained in
more detail in Section 5. As a result of these constraints, each voice
generated by our algorithm is a sequence of non-overlapping notes
and chords.

Before assigning the notes of the input piece d into voices, we

Voice Separation - A Local Optimisation Approach

pitch

time

y
1

y
2

y
3

��� � � � ��� ����8 � !��� �
� � ����� � � � � � � ��� ���'�5� � !��� �
��� � & �
� � � �� � & � � 0

will partition d into slices � D of consecutive overlapping notesG C�� J h h h J C�� o � � such that there is an overlap between any pair of
notes within each slice and that between any two consecutive slices,
� D and � D o�g there are at least two notes that do not overlap. This
implies that all notes from � D except for the one with the smallest
offset time may overlap with notes in � D o�g (see Figure 3 for an
example).

Mathematically, the partitioning of d into slices can be modelled as
follows. First, we define the set � of all indices of notes in d that
become the first notes of the slices � g J h h h J � 	 :

� ^ F l�
 g J h h h J
 	� j B�k/l = J h h h J ��n-^
 D�k���

 g*F
=���
 	�\�m �
G j � J �.k�l
 D J h h h J
 D o�g�<4= n-^
M � � R b S U�G C� J C�� � � �

G ��� ����
 D o�g�^ j �.k/l
 D J h h h J
 D o�g�<4= n-^
M � � R b S U�G C� J C�� � n

Based on � , we can now define the set of all slices � D :
 ^ F l � g�h h h � 	� � D FHG C�! " J h h h J C�! " # $ % g n

The induces the following partitioning of d into slices � D :
d F
G C�g J h h h J C ! & % g' () *+ $

J C ! & J h h h J C ! , % g' () *+ &
J h h h J C ! - J h h h J CEi' () *+ -

�

We denote a voice separation for a slice � D�F5G C ! " J h h h J C ! " # $ % g �
by .�G � D � F G � D g J h h h J � D � � where the � D ��F G � M T V � G C�! " o � % g � JV W M R P�G C ! " o � % g � � represent the voice and chord that the � th note
of slice � D is assigned to under separation .�G � D � . As an abbreviation,
will use .�D�^ F/.*G � D � . Furthermore, we use . �D to denote the set of all
possible voice separations .*G � D � for slice � D . Any voice separation
. for the complete input piece correspond to the combinations of
voice separations for all slices � D , T � � � .�F'G .�g J h h h J .0	 � , and the
set of all possible voice separations of d is denoted . � .
The number of different voice separations for a single slice � D . T � � � ,
the size of the set . �D , depends on the number of notes in � D , � � D � ,
and on the maximum number of voices in the desired output of our
separation algorithm, �0132 B Y 4 � . More precisely, in the worst case,
in which any subset of notes in � D can be combined into a chord,
there are at least �0132 B Y 4 � 5 + " 5 possible voice separations of slice � D .
Hence, in the worst case, the number of possible voice separations
of a given input piece d is exponential in the number of notes in d .

This suggests that in order to find voice separations that are optimal
with respect to a given set of criteria (which will be more precisely
defined in the next section), the naive method of enumerating all pos-
sible separations and selecting the best of these can be prohibitively
expensive, especially when the goal is to allow the user to interac-
tively tune the parameters voice separation process in order to obtain
a desired output. Consequently, our voice separation algorithm uses
a substantially more efficient, heuristically guided process for itera-
tively constructing voice separations using a stochastic local search
procedure for optimising the separation of individual slices.

��� ��& � "���� �)
 � % � # � � � � � � �
 � G d�J ; �� � ��� � �
	
 � � � ��� � 	 ��
 � �
 � � 	 d��� 6 � �8� � � " �A� � �
 �)
 � % � 	 ;� � � ��� � �
)
 � % ��	 � � � � � � �
 � .	 � . ��� � � d � � �
�	 � � % � 	 � g J h h h J � 	./^ FHG �� � � B�^ FH= � � �. D*^ F � � U S R S O � 7 b T V � G � D J . �.^ F8.E[9. D� � � ��� � � � ��
) � � � � � 	�� � � � � �8)
 � % � 	�
 � .� � ��� � . " � � � � 	 �$% �
 � � 	 ��� � � ��� � : " � � � �� ��"� ��"

��� � � � �<;��=A� � � ����� �+� ����, � � & ��� � ��� � � � � � �� � � � � � ��!9>
� � �/����� ��� � � � � � "3� ��������" � � � (�� ��� ����� ��& � "�� � �� �E& � � "� � � � �� � !�� ,�� ���H� � � & & � � � & � � �4� ��"'� � � � �
� �5� ���
� � ��� �
��� � & � d 0

4. OUR HEURISTIC ALGORITHM
The main idea underlying our algorithm is to construct a voice sepa-
ration for the given input piece d from locally optimised separations
for the slices of d . This local optimisation is based on a parametric
cost function ? that assesses the quality of the voice separation of
a given slice, .�D , given the separations of all previous slices, T � � � ,G .�g J h h h J . D % g � . The definition of this cost function will be given
below.

Given an input piece d and a maximal number of voices �0132 B Y 4 � ,
our voice separation algorithm works as follows: After segment-
ing d into slices � g J h h h J � 	 (as described above), a cost-optimised
voice separation for the first slice, � g , is computed. Then, this voice
separation is iteratively extended by cost-optimised separations for
� @ J h h h J � 	 , resulting in a complete voice separation for d . How-
ever, particularly in the case of unquantised input data, this voice
separation might contain chords with notes that slightly differ in
their onset times or durations as well as overlapping notes within
the same voice. Therefore, every time after the voice separation is
extended by a slice separation, these situations are resolved by ad-
justing the durations or onset times. This guarantees that in the final
result there are no overlaps between notes within any of the voices
and all notes within any chord have the same onset time and duration.

In the following, we describe the cost function and the cost-optimising
voice separation of slices in more detail.

4.1 The Cost Function
The cost function ? used for assessing and optimising the quality of
a voice separation .�D of a slice � D , given separations .�g J h h h J . D % g
for all previous slices, is a weighted sum of terms that penalise
individual, undesirable features:

?AG . D J . � F L � D A B C ?�� D A B C G .�D J . � [EL D E � ?�D E � G . D J . � [
L B C F � G ?�B C F � G G .�D � [�L F H i ?�F H i G .�D J . �

Here, . denotes the partial voice separation G .�g J h h h J . D % g � . Intu-
itively, ?�� D A B C and ?�D E � penalise large pitch intervals and gaps (rests)
between successive notes in a voice, respectively; ? B C F � G penalises
chords with a large pitch interval between the highest and the lowest
note, as well as irregular chords containing notes with different onset
times or durations; and ?�F H i penalises overlaps between successive
notes in the same voice. By adjusting the weights of these terms,
different trade-offs between these features can be achieved, leading
to qualitatively different voice separations (chordal, single voices,� O V � ; see Figures 1 and 5). In the following, we describe in detail
how the four penalty terms are calculated.
:-� � & ����� � � � ��& �/:�� ��� � 6 ?�� D A B C
The segregation of multiple melodic lines by human listeners de-

Voice Separation - A Local Optimisation Approach

� = � � 4 �

� = � � 4 �
��� � � � ��� �H��� ��� � � � �� � ��� � � � � � ���/� ��� � �5� , � � � ����� � �
��� � � � ���	 %����.� � � " c-c ��:-� � & ��(A� 1 %E��:-� � & � c-c ���.� � � "�()*	 %+��:-� � & � c-c ���A� ��(�)�1 %+����� � c-c ��:-� � & ��>���8�� !��� ��)�%
� �+� � ��"�� � & ��� � � "�)�6/>�0�=�0���� � � "�� � � � �
	 � � (��00� � � (���� �
��� �4	 � 0

pends very strongly on the frequency distribution and separation of
the melodies [2]. Consequently, it makes sense to use similar fea-
tures for in the context of automatic voice separation. The pitch
distance penalty increases with the interval size between two suc-
ceeding notes in a voice. For the first note of a voice, a fixed penalty
is imposed for starting a new voice. In some cases (melodies includ-
ing short sequences of large intervals), a ‘lookback mechanism’ can
be advantageous by which the pitch at the end of an existing voice is
calculated from the average pitch of the last � notes in the respective
voice. This mechanism behaves somewhat similar to the approach
of Gjerdingen [3] in which the motion-tracking system moves with
some delay from a current pitch to the pitch of an incoming note.
Only if the incoming note is long enough, the motion tracker reaches
the exact pitch level of that note and stays there.

If a note C�] is assigned to a chord, we define the pitch-distance
(interval size) between note C�] and a pitch L i as the pitch-distance
to the note of the chord which is closest in pitch to L i . Therefore we
define a function Y �+B � Y ��G C�] J L i � which returns L B � Y ��G C�] � if C�] is a
non-chord note and returns the pitch of the chord note which is closest
to L i otherwise. If no pitch lookback is used, the pitch of an existing
voice X – when comparing to pitch L i – is defined as V �*T O V W G X J L i �
= V �*T O V W G b ��N�G X � J L i � , where b �*N�G X � denotes the latest onset time
in a voice X , T � � � , b ��N�G X � FAM N � � O (C�]) where � is the largest value
such that X 2 B Y 4 G C�] � F X in . . If pitch lookback is used, the
pitch of voice X is calculated as shown in Figure 6; U R � � G C�] J L i �
denotes the note directly preceeding note C�] in the same voice
as C�] and not assigned to the same chord as C�] . If the directly
preceeding note is assigned to a chord, the chord note which is closest
to pitch L i returned instead T � � � , L � 4 X G C�] J L i � ^ F'C�� where ; is
the largest value such that C ��� C�] with � M T V � G C � � F � M T V � G C�] �
and V W M R P�G C�� �+qF V W M R P�G C�] � . The weighting of 0.8 for the current
pitch and 0.2 for the previous pitch that is used in this calculation
was found empirically to give good results for the tested input data.

The pitch distance penalty ?�� D A B C for a single voice can then be
calculated as shown in Figure 7. Based on the ? � D A B C values for
each voice X , the overall pitch distance penalty for a complete slice
separation . D can be calculated as shown in Figure 8.
��� ����� � � � ��& �/:�� ��� � 6 ?�D E �
Studies have shown that melodies with few and short rests are per-
ceived more easily as a coherent melodic line by a human listener
than melodies with many long rests [2]. The structure of many
melodic lines in Western music is consistent with this observation.
Therefore, we impose a gap penalty if adding a note from the current

� ����& � � � � % � � � % � G X & m & L] �� � ��� � �
)
 � % ��� � � � 6 X & �

 � � � % �8	 � � � m� � � % � L]
 � �
 � � �� � � ��� � �
�) � � � . ��� � � % � L
 �)
 � % � X�
 ��%
 ��� � � � 	
 �8�
 L]

L � 4 X ��2 � 4.^ F
U R � � G b �*N�G X � J L] �L�^ F V �*T O V W G b �*N�G X � J L] �B*^ F5=����� � B�\�mL�^ F�� h 5�� L.[�� h 4�� V �*T O V W G L � 4 X �2 � 4 J L] �L � 4 X ��2 � 4.^ F3U R � ��G L � 4 X ��2 � 4 �B�^ F
B [=� ��"� � � ��� � G L �� ��"
��� � � � ��� � :-� � & � & � & �� � � � � � � � � , � � & � X ��� � �L B � Y � m 2 2 ;
 I Y ; c � >���� � & ��� �A!�� � � � � � "� �� � !/� � � ��� � 0

� ����& � � � � ?�� D A B C G . D J .�J X �� � ��� � �
	 � � % ��	 � � � � � � �
 � .�D	 � � � � � � �
 � . �
 ��� � �) �
 " 	�	 � � % �)
 � % ��� � � � 6 X� � � ��� � �
� � � % � � � 	 � � � % � L X �

L � 4 X ��2 � 4.^ F
U R � � G X J U T O V W G C�] � �L X �$^ F�� � � ��� C�]-k�. D ��� � � � M T V � G C�] � FX "��L �AB � ��^ F�� V �*T O V W G L � 4 X ��2 � 4 J U T O V W G C�] � � <U T O V W G C�] � � � ! = 4 5L X �#^ F�L X �3[3G =*<EL X � � � L �.B � �� � V W M R P�G L � 4 X ��2 � 4 �+qF V W M R P�G C�] � � � � �L � 4 X ��2 � 4.^ F
C�]� ��"� ��"� � � ��� � G L X � �� ��"
��� � � � �#" �#�-� & �� � � � � �'� � ?�� D A B C � � ��H� � � � �
, � � & � X� � .�D >-� ����"�� ,�� � � � �H) 65	 1 $3� �E)�� � � "
� �
� � �� � & �E� ��� ���� � �5��� � � ��%'& �(&�"�� � ��(�	 1 $
� ��� ���3!�� 8�� !���! ��� � & �
"�� ��� � � ��& � 0

� ����& � � � � ?�� D A B C G . D J . �� � ��� � �
	 � � % ��	 � � � � � � �
 � .�D)
 � % ��	 � � � � � � �
 � . �
 ��� � �) �
 " 	�	 � � % � 	� � � ��� � �
� � � % � � � 	 � � � % ��� � � � � � * L �

L �$^ F�� � � ��� X ��� � "� � . D "��L �#^ F�L �3[3G =*<EL � � � ? � D A B C G . D J .�J X �� ��"� � � ��� � G L K �� ��"
��� � � � �)$ ���-� & �� � � � � �4� �*��� � & �4"�� � � � ��& ����� ��� � 6 ?�� D A B C� � �A� � & ��� � ��� � � � � � � . D � � , � ��� � ��� � � � � � � . � � �.��� � ,�� � ���� � & � � 0

Voice Separation - A Local Optimisation Approach

� ����& � � � � ?�D E � G . D J . �� � ��� � �
	 � � % ��	 � � � � � � �
 � .�D)
 � % ��	 � � � � � � �
 � . �
 ��� � �) �
 " 	�	 � � % � 	� � � ��� � �
. � � � � 	 � � � % ��� � � � � � *�� �� �$^ F��Y �2 � 4 �A^ F��� � ���)
 � % � 	 X ��� � "� � .�DC ^ F � � � � � � 	 ���
 � ��� � .�D � � � � � M T V � G C�] � F�X� �$^ F � �3[�?�D E � G C�J X �Y � 2 � 4 �.^ F
Y � 2 � 4 ��[�=� ��"

� �$^ F � � ! Y � 2 � 4 �� � � ��� � G � � �� ��"
��� � � � ��� ���-� & �� � � � � �'� ��� � �'"�� � � � ��& �3��� � � � 6 ?�D E �� � �A� � & ��� � ��� � � � � � � . D � � , � ��� � ��� � � � � � � . � � �.��� � ,�� � ���� � & � � 0

slice to a voice introduces a rest; furthermore, the penalty increases
with the duration of the rest. If the added note C is the first of
the respective voice, the time difference between time position zero,T � � � , the onset time of the first note in d , and the onset time of C is
penalised. Because all notes in a slice � D are overlapping each other,
gaps between notes within � D cannot occur.

The gap distance penalty ?�D E � for a single note C�] and a voice X is
defined as the length of the gap introduced in voice X by adding C�]
divided by the maximal gap length introduced by adding C�] to any
voice in . ; this results in gap penalty values that are always between
zero and one. Based on this measure, the overall gap distance penalty
for .�D and . can be calculated as shown in Figure 9.
�.� � � "���� � � � ��& �/:�� ��� � 6 ? B C F � G
Both, the limitations of human physiology in playing chords with
very large ranges, T � � � , pitch differences between the highest and
lowest note, as well as compositional practice suggest that when
combining notes into chords, chords with small ranges should be
preferred over chords with large ranges. Furthermore, in most cases,
we would expect all notes belonging to the same chord to have
identical or very similar onset times and durations. (Note that we
allow the grouping of notes of with different onset times into the
same chord only for unquantised input data.) Hence, we use a chord
distance penalty that increases with the range of a chord, with the
differences in durations of its notes, and with the distance between
the respective onset times (in the case of unquantised data).

Based on these considerations, the following penalty terms are used
as components of the overall chord distance penalty for a given slice
separation . D :
The range penalty L �+I � � 4 for a chord Y is defined as L ��I � � 4 G Y � F��� � l R S N � � G Y � ! 4 3 J = n , where R S N � � G Y � is the pitch difference be-
tween the lowest and the highest note in Y (measured in semitones).
Note that according to this definition, the range penalty is always
a value between zero and one, and all chords with a range of two
octaves or more receive the same maximum penalty value of one.

Analogous to the range penalty, the duration penalty L ��� � I � B 2 � for
a chord Y depends on the relation between shortest and longest note
in Y ; it is defined as L ��� � I � B 2 ��G Y � F
=*<<� K � � G Y � ! m K � � G Y � , where
� K � � G Y � and m K � � G Y � are the durations of the shortest and longest
note in Y , respectively. Note that according to this definition, the
duration penalty is always a value between zero and one, and a range
penalty of zero is obtained if and only if all notes of chord Y have
equal duration.

Finally, the onset time penalty L ��� of a given chord Y is defined
as L ����G Y � FfG m ����G Y � </4 ����G Y � � ! m ��� � G Y � , where m ����G Y � and
4 ����G Y � are the onset times of the latest and the earliest note in Y (with

� ����& � � � � ?�B C F � G G . D �� � ��� � �
	 � � % ��	 � � � � � � �
 � .�D� � � ��� � �
% �
 � �8� � 	 � � � % ��� � � � � � * Y �

Y �#^ F�� � � ��� % �
 � � 	 Y � � . D "��L�^ F
U �+Q R S O T M N�G Y � [G =�<�U �+Q R S O T M N*G Y � � � U 	*S N � � G Y �L�^ F�L.[�G =�<�L � � U���N�G Y �Y �#^ F
Y �3[�G =�</Y � � � L� ��"� � � ��� � G Y � �� ��"
��� � � � � 	 � � �-� & �� � � � � � � ��& � � � " "�� � � � ��& �$��� ��� � 6
? B C F � G � � ��� � & �/� � ��� � � � � � � .�D 0

respect to their respective onset times), while m �
� � G Y � is the duration
of the longest note in Y . Note that the onset time penalty for chords
in which all notes have equal onset times is zero; furthermore, L ���
values can never be larger than one, because non-overlapping notes
cannot be part of the same slice and hence will never be combined
into the same chord.

Based on these three penalty terms for individual chords, the overall
chord distance penalty for a complete slice separation .�D is calcu-
lated as shown in Figure 10. This particular way of combining the
penalty terms is chosen to ensure that if one of the terms is large, the
overall chord penalty is large as well; note that by using a (weighted)
arithmetic average of the three penalty terms, this property cannot
be guaranteed.
=., � � � �3��� � � � ��& ��:�� � � � 6 ? F H i
Although notes within a voice generally should not overlap, depend-
ing on the instrument and style of music, there are cases in which the
notes of a single melodic line are played with substantial overlaps
that cannot be removed reliably by preprocessing, as illustrated in
the of fingered pedal example shown in Figure 11. Therefore, we
allow overlapping notes to be assigned to the same voice without
combining them into a chord, but impose a penalty that increases
with the amount of overlap. (Note that such overlaps are ultimately
eliminated in our algorithm by shortening the duration of the earlier
note.)

Consequently, we define the overlap distance penalty for two suc-
cessive notes C�] and C � within the same voice as ?�F H i G C�] J C � � F=�<G M N � � O G C�� � <M N � � O G C�] � � ! P Q R S O T M N�G C�] � if C�] and C�� over-
lap, T � � � , if M � � R b S U�G C�] J C � � , and ?�F H i G C�] J C � � F � otherwise.
According to this definition, the overlap distance penalty between
notes ?�F H i G C�] J C � � is always a value between zero and one. The
overlap distance penalty for a single voice X used in a slice separation
. D and the overall overlap distance for a slice separation .�D are then
calculated as shown in Figures 12 and 13.

4.2 Cost-Optimised Slice Separation
Based on the cost function ? defined above and given a separation
. of slices � g J h h h J � D % g , we use a stochastic local search approach
for finding a cost-optimised voice separation . D for slice � D : Starting
with an initial separation .�D�^ F/.��D , a series of randomised iterative
improvement steps is performed during each of which one note is
reassigned to a different voice. Whenever such step results in an
assignment with lower cost than the best assignment seen so far,
this assignment and its cost are memorised. This search process
is terminated when no such improvement has been achieved for a
fixed number of steps. In the current implementation, we use
-F 6�� � � D � � �0132 B Y 4 � . Figure 14 gives a pseudo-code specification
of this randomised iterative improvement procedure.

An initial separation .��D for the given slice . D is obtained by assigning
all notes of � D to the first voice. During this process, notes with equal

Voice Separation - A Local Optimisation Approach

� �

� � % �
��� � � � ��	 	 �-��� ��� � � � �-� � ��� � � � � � ���-� �*� � � � ��� , � � � ����� � �
��� � � � �-��%-� ��������" � � ��)�%-� �� , � � � ���.� � !�� , � "/� �/� � � !� � ��� ��, � � & � (�& %.� �� � ��� � � �/� � � � �E, � � & � � 0

� ����& � � � � ?�F H i G . D J .�J X �� � ��� � �
	 � � % ��	 � � � � � � �
 � .�D)
 � % ��	 � � � � � � �
 � . �
 ��� � �) �
 " 	�	 � � % �)
 � % � � � � X� � � ��� � �

) � � � � � � � 	 � � � % ��� � � � � � * 2 X �

L � 4 X ��2 � 4.^ F'b �*N�G X �2 X �#^ F��� � ��� C�] � � � D � � � � � M T V � G C�] � FX "��
2 �AB � �+^ F�?�F H i G L � 4 X �2 � 4 J C�] �2 X �#^ F82 X �3[�G =�<<2 X � � � 2 �.B � �� � V W M R P�G C�] �+qF V W M R P�G L � 4 X �2 � 4 � � � � �L � 4 X ��2 � 4.^ F
C�]� ��"� ��"� � � ��� � G 2 X � �� ��"

��� � � � �5	 1 �#�-� & �� � � � � �'� ��� , � � � �$"�� � � � ��& �
��� ��� � 6
� � �E� � ��� �E, � � & � 0

� ����& � � � � ? F H i G . D J . �� � ��� � �
	 � � % ��	 � � � � � � �
 � .�D)
 � % ��	 � � � � � � �
 � . �
 ��� � �) �
 " 	�	 � � % � 	� � � ��� � �

) � � � � � � � 	 � � � % ��� � � � � � * 2 �

2 �#^ F��� � ��� X " 	 � ��� � .�D
2 �AB � �+^ F�?�F H i G .�D J .�J X �2 �#^ F82 �3[�G =�<<2 � � � 2 �.B � �� ��"� � � ��� � G 2 � �� ��"

��� � � � �5	 � �#�-� & �� � � � � �'� ��� , � � � �$"�� � � � ��& �
��� ��� � 6
? F H i � � �A� � & ��� � ��� � � � � � � .�D � � , � �/� � ��� � � � � � � . � � �.��� � ,�� � ���A� � & � � 0

� ����& � � � � 	 � � � � � � � # � � % � G � D J . �� � ��� � �
	 � � % � � D)
 � % ��	 � � � � � � �
 � . �
 ��� � �) �
 " 	�	 � � % � 	� � � ��� � �

 � � � ��� 	 � ��	 � � � % � �
 � . F � AD
 � � � � � . D � *�	 � � � � � .�� � � �
 � � 	�
 � � D �
�)
 � % � �� � ��%
 �A� � � � � .�� � � �
 � � 	�� � � �8� : " � �
 � 	 � ��� � ��� 	

� � �
$% �
 � � 	

. F � AD ^ F8.�D� 2 � CAL �A^ F������� � � 2 � CAL � � � � D � ���01 2 B Y 4 ��� 6��� � �4��� �)��)�� � � 6 � h 5 " �
. D*^ F � � � . � �
 " � .��D
 � .�D � � � ���� � � �8� � %
 	 � ?AG .��D J . �� � � � � ��� � �
. D*^ F � � � �
 ��� *�	 � � � % � � �8� � � . � �
 " ��
 � . D� ��"

� � ?AG .�D J . � � ?AG . F � AD J . � � � � �. F � AD ^ F/. D� 2 � CAL ��^ F��� � �
� 2 � CAL ��^ F8� 2 � CAL �*[�=� ��"� ��"

� � � ��� � G . F � AD �� ��"
��� � � � �	 ;���>A� ��"�� !/� � � "3� � � � � � � , �4� !���� � , � !�� � �A� � �
� � � ��! � � �47���"�� � �H�H& � � � � ��� � !/� � � "$� � ��� � � � � � �5� � �4�
� � ��� �/� � & � � D 0

onset times are combined into chords. Another natural choice for the
initial separation is to distribute all notes in � D into voices such that
overlaps and chords are avoided as far as possible. Empirical tests
(not reported here) suggested that the former initialisation method
leads to better results than the latter approach.

Subsequently, in each local search step we move from the current
separation of � D to a neighbouring separation; two separations . D and
.��D are neighbours if and only if .�D and .��D are both valid separations
of � D that differ in the voice and/or chord assignment of exactly one
note in � D . A separation is valid if and only if any notes with identical
onset times that are assigned to the same voice are also combined
into a chord.

The selection of the actual search step to be performed is based
on a randomised greedy choice: With a certain probability (in our
implementation, we used a value 0.8 for which we obtained good
empirical results), the neighbouring separation with minimal cost is
selected, otherwise, a neighbour of the current assignment is selected
uniformly at random. The randomisation prevents the search process
from getting stuck in local minima of the cost function ? .

While there is no theoretical guarantee that this randomised iterative
improvement algorithm will find the globally optimal separation for
the given slice, it finds optimal or close-to-optimal separations very
efficiently in practice. Similar stochastic local search strategies have
been very successfully applied to many prominent combinatorial
problems (see [4]).

5. IMPLEMENTATION
Our voice separation algorithm is implemented in the current version
of �
	 � 	 � ��� , a larger programme for converting MIDI files into��� � ���

Music Notation. All parameters for the voice separation can
be specified in an initialisation file (fermata.ini). The code is written
in ANSI C++ and has been successfully compiled and tested under
Windows, Linux and Mac OS.

The input data can be quantised or unquantised low-level musical
data. Unquantised data (where the tempo might also be unknown)
requires preprocessing to remove inaccuracies and noise that could

Voice Separation - A Local Optimisation Approach

��� � � � ��	 � ���+��"�� ����� ��� � �A& � � � � �� %
� � � � �E��� �-� !����)�� �
� � ��"��.) 6���0 9�0.?.� & ��(�?	�$2 � $ � (�� � ��� � � � � "H� ���3� � � �, � � & ��� & � � � 0

have detrimental effects on the performance of the voice separation
algorithm.

Our preprocessing removes small overlaps between notes as may
arise, � � � � , when playing legato passages on a keyboard instrument.
We consider an overlap small, if the time difference between the
offset of the earlier note and the onset time of the later note is
small compared to the durations of the two notes. Such overlaps are
eliminated by shortening the duration of the earlier note

Furthermore, minor differences in the onset times of two notes that
result from imprecise playing can be resolved by replacing both on-
set times with their average if the durational overlap of the two notes
is large compared to the onset time distance and if the onset time
distance is very small.

�
Notes with a longer duration or greater inten-

sity can have a ‘higher influence’ on the calculation of the resulting
average onset time. This onset time correction forces our voice sep-
aration algorithm to combine the respective notes into chords if they
get assigned to the same voice and hence facilitates the recognition
of chords.

Our implementation uses MIDI files as input data; these can be
obtained from notation software, by recording a human performance
using a MIDI sequencer, from a wave to MIDI converter, or as the
result of converting musical data from other formats.

The four penalty parameters and the pitch lookback parameter can
be defined by the user in an initialisation file. Parameters for which
no value is specified are set to default values predefined in our imple-
mentation. The maximum number of voices to be used in the final
separation of the given piece can also be specified in the initialisa-
tion file. If this parameter is not specified by the user, the maximum
number of voices is set to the maximum number of overlapping notes
at any time position of the input piece.

6. RESULTS AND DISCUSSION
We tested our approach on different types of music: most of the
inventions by J.S. Bach, some chorals by the same composer, a waltz
by F. Chopin, parts of ‘Mikrokosmos’ by B. Bartok, and several other
pieces. As input data we used quantised MIDI files with all events
merged into a single track.

With the correct parameter settings, the tested Bach chorals and
inventions were separated almost entirely correctly (see Figures 15
and 16). Only in a few cases where the voices nearly meet at the same
pitch, sometimes localised errors occurred. With different parameter
settings, it was possible to separate the chorals into single voices,
into a two staff piano score, or to collect them as chords in one voice.

Figure 17 shows a correct separation of a part of a waltz by Chopin
obtained from our voice separation algorithm. When using higher
chord penalties and lower overlap penalties, however, the same input
data is (incorrectly) separated as shown in Figure 18.
� � ��� � 	-� � � ��	 �
 ����� 6 � � � � ��� � � � � � *�� � � ��
 � 	 � ��� � ��� 	���� � �-�
� � 	 � � � % �$
 � � � 	 	�� � � ��� � � �
 6 0 3 � ��	�� � �$� � � % � �) � � � 	�	 � �$" � � � �� �
 " 	�� *�� " �8� ��� � 	 � � � � � 	 G 	 � � & � � � � &�
 4 � � 0

��� � � � ��	 � ���+��"�� ����� ��� � �A& � � � � �� %
� � � � �E��� �-� !����)�� �
� � ��"��*) 6���0 9�0�?.� & ��(*?�'2 � $ � (*� � ��� � � � � "� �A�/��� � � �
� � 6� ��� & � � � 0

��� � � � ��	 " � �.� � ��� ��(�2-� � � (�=.�����(� ;���� 0+	 (�!/!40+	 � 	 	 � ;�0

��� � � � ��	 $ � �.� � ��� ��(�2-� � � (�=.�����(� ;���� 0+	 (�!/!40+	 � 	 	 � ;�(�� ��& � � � � & ��� � ��� � � � � � ��0

Voice Separation - A Local Optimisation Approach

��� � � � � 	 � � ��0 9�0$?-� & ��(�
� � � !���� � � " �. � ,�� � � (
?.� � � & (*����� � � ����0�	E� � � %3� � � � (�!/!40*	 � 	 	 0

� �

� �
��� � � � � 1 � � ��0 9�0$?-� & ��(�
� � � !���� � � " �. � ,�� � � (
?.� � ��& (���� � ��� ����0���� �
��� %3� � � � (�!/!40�	 � 0-��%��-� �
� � & �A� � ��� � � � � � �4��� � � L �+I L c L �+B � Y � 0+)*% & ��& � � � � & ��� � � � � � � � � ���� � � L �+B � Y � c L �+I L 0

Situations in which a voice continues with a large interval step after
a rest can lead to incorrect voice separations. In the example of
Figure 19, the alto and tenor voices pause in the middle of measure
10. In the original score, the alto voice continues at the end of
measure 10 and the tenor voice has still tacet. Because the first
note of the continuing motive (d1) has a smaller pitch distance and a
smaller gap distance to the tenor voice (g0) than to the alto voice (b1)
and because there are only three notes to separate into four voices,
the algorithm assigns this fragment incorrectly to the tenor voice.

The same example is also discussed by Temperley [9], whose ap-
proach encountered the same problems. We could not improve this
result by changing parameter settings. It seems that when only con-
sidering the notes, without any knowledge about the composer and
style of the piece, there is no reason why another separation should
be preferred. This case shows that there exist scores or compo-
sitions where at some points the intention of the composer differs
from the results obtained by applying standard voice-leading rules
or cost functions. In more complex pieces (� � � � , Mikrokosmos 153
by Bartok), the same effect occurs at some positions. In another
example (Figure 20), we could avoid the problems which Temper-
ley discusses in his book by using our algorithm with appropriately
chosen parameter settings.

7. CONCLUSIONS AND FUTURE WORK
We presented an approach for voice separation on low-level musical
data using stochastic local search for calculating an optimal voice
structure. Different from most other existing approaches which are
restricted to separating a piece into multiple monophonic lines, our
system can detect chords. It is also capable of producing different
types of voice separations, based on the settings of a small set of
parameters that are accessible to the user. These parameters control
the relative influence of various criteria for good voice separations
in an intuitive way.

Our algorithm can be applied to quantised input data as well as to
unquantised input data with our without tempo information. For
unquantised input data, we apply preprocessing in order to eliminate
inaccuracies and noise prior to running our voice separation algo-
rithm. It may be noted that correctly separating the voices within
unquantised input data can increase the quality of a subsequent quan-
tisation process.

We believe that the quality of the results obtained from our algo-
rithm can be further improved by fine-tuning the cost function. For
example, our latest tests indicate that using an exponential function
for penalising the chord range may give better voice separations.

We are currently investigating possibilities for connecting our current
implementation (midi2gmn) to the online

��� � ���
NoteServer [8] to

provide an online MIDI-to-Score service. In this context, we are
studying further optimisations of our implementation with respect to
its run-time.

In the future, we plan to develop a graphical interface for our voice
separation programme that allows the user to change the penalty pa-
rameters and see the corresponding results in real-time. Furthermore,
in some cases it would be beneficial to support the use of different
parameter settings for different parts of a given piece. This could be
accommodated by allowing the user to select individual fragments
of a given piece and to perform voice separation only for the selected
fragments.

8. REFERENCES
[1] E. Cambouropoulos. From MIDI to Traditional Musical Nota-

tion; In � R M V � M � O W �����	��
�� M R � W M UEM N � R O T ��V T S b
 N O � b b T �� � N V � S N P���Q � T V : Towards Formal Models for Composition,
Performance and Analysis. Austin (TX), USA, 2000.

[2] A.S. Bregman. Auditory Scene Analysis. The MIT Press, Cam-
bridge (MA), USA, 1990.

[3] R.O. Gjerdingen. Apparent motion in music? Music Percep-
tion, Vol. 11, pp. 335–370, 1994

[4] H.H. Hoos. Stochastic Local Search – Methods, Models, Ap-
plications. Infix Verlag, Sankt Augustin, Germany, 1999.

[5] H.H. Hoos, K. Renz, and M. Görg. GUIDO/MIR — an Experi-
mental Musical Information Retrieval System based on GUIDO
Music Notation. In � R M V � M � O W ��� N P
 N O � R N S O T M N S b 7 � ���U M � T Q � M N��EQ � T V�
 N � M R � S O T M N 	 � O R T � � S b��
 7 �
 	 � � � � � ,
Indiana University, Bloomington (IN), USA, 2001.

[6] J. Kilian. FERMATA – Flexible Quantisierung von Musik-
stücken im MIDI-Dateiformat. M.Sc. thesis (in German),
Darmstadt University of Technology, Germany, 1996.

[7] S. L. McCabe and M. J. Denham. A model of auditory stream-
ing. Journal of the Acoustical Society of America, Vol. 101(3),
pp. 1611–21, 1997.

[8] K. Renz and H. H. Hoos. A Web-based Approach to
Music Notation Using GUIDO. In � R M V � M � O W ��
 N O � R �N S O T M N S b���M � U Q O � R��EQ � T V ��M N � � R � N V ��� ! , pp. 455–
458, ICMA, San Francisco (CA), USA, 1998. See also:
http://www.noteserver.org.

[9] D. Temperley. The Cognition of Basic Musical Structures. The
MIT Press, Cambridge (MA), USA, 2001.

[10] D. Temperley and Daniel Sleator. The Melisma Music Ana-
lyzer. http://www.links.cs.cmu.edu/music-analysis.

